Extensions 1→N→G→Q→1 with N=C2 and Q=C24.4C4

Direct product G=N×Q with N=C2 and Q=C24.4C4
dρLabelID
C2×C24.4C432C2xC2^4.4C4128,1609


Non-split extensions G=N.Q with N=C2 and Q=C24.4C4
extensionφ:Q→Aut NdρLabelID
C2.1(C24.4C4) = C23.28C42central extension (φ=1)64C2.1(C2^4.4C4)128,460
C2.2(C24.4C4) = C42.378D4central extension (φ=1)64C2.2(C2^4.4C4)128,481
C2.3(C24.4C4) = C243C8central extension (φ=1)32C2.3(C2^4.4C4)128,511
C2.4(C24.4C4) = C42.425D4central extension (φ=1)64C2.4(C2^4.4C4)128,529
C2.5(C24.4C4) = C23.32M4(2)central extension (φ=1)64C2.5(C2^4.4C4)128,549
C2.6(C24.4C4) = C25.3C4central stem extension (φ=1)16C2.6(C2^4.4C4)128,194
C2.7(C24.4C4) = (C2×C4)⋊M4(2)central stem extension (φ=1)32C2.7(C2^4.4C4)128,195
C2.8(C24.4C4) = C42.42D4central stem extension (φ=1)32C2.8(C2^4.4C4)128,196
C2.9(C24.4C4) = C23⋊M4(2)central stem extension (φ=1)32C2.9(C2^4.4C4)128,197
C2.10(C24.4C4) = C42.43D4central stem extension (φ=1)32C2.10(C2^4.4C4)128,198
C2.11(C24.4C4) = C42.44D4central stem extension (φ=1)64C2.11(C2^4.4C4)128,199
C2.12(C24.4C4) = D4⋊M4(2)central stem extension (φ=1)32C2.12(C2^4.4C4)128,218
C2.13(C24.4C4) = Q8⋊M4(2)central stem extension (φ=1)64C2.13(C2^4.4C4)128,219
C2.14(C24.4C4) = C42.374D4central stem extension (φ=1)64C2.14(C2^4.4C4)128,220
C2.15(C24.4C4) = D44M4(2)central stem extension (φ=1)64C2.15(C2^4.4C4)128,221
C2.16(C24.4C4) = D45M4(2)central stem extension (φ=1)32C2.16(C2^4.4C4)128,222
C2.17(C24.4C4) = Q85M4(2)central stem extension (φ=1)64C2.17(C2^4.4C4)128,223
C2.18(C24.4C4) = C232M4(2)central stem extension (φ=1)64C2.18(C2^4.4C4)128,602
C2.19(C24.4C4) = C42.109D4central stem extension (φ=1)64C2.19(C2^4.4C4)128,687
C2.20(C24.4C4) = C42.120D4central stem extension (φ=1)128C2.20(C2^4.4C4)128,717

׿
×
𝔽